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Abstract. The attached, temporally-oscillating turbulent boundary layer is investigated by use of asymptotic
matching techniques, valid for the limit of large Reynolds numbers. Much of the analysis is applicable to gen-
erally accepted turbulence models (which satisfy a few basic assumptions as detailed in the paper), and this is
then applied in particular to two well established turbulence models, namely-the transport model and the
Baldwin—Lomax mixing-length model. As in the laminar case, the steady-streaming Reynolds number is found to
be an important parameter, although in the turbulent case this is important at leading (rather than second) order.
In particular, the time dependence of the wall shear (and the displacement thickness) is found to leading order
to be independent of the specific closure model, but just differs by a multiplicative constant dependent on the
particular model. Results are also compared with previous computational and experimental data; the agreement is
encouraging.

In addition to describing the oscillatory flow above a flat wall, these leading order results are applicable to flow
past general bodies, provided the amplitude of oscillation is small compared to the surface radius of curvature. In
the case of the Baldwin—Lomax model, the nature of the higher-order terms, including the steady streaming caused
by the interaction of curvature and inertia effects is also investigated. This analysis suggests some limitations on the
applicability of the model to the finer details of the flow, due to the occurrence of discontinuities (and singularities)
in the higher-order asymptotic solution, particularly when inertia effects are taken into account.

Keywords: oscillatory, turbulent boundary layers, asymptotics, very high Reynolds number flows.

1. Introduction

Analytical solutions for oscillatory laminar boundary layers are well known (Stokes [1]); at
high enough Reynolds number the boundary layers become turbulent and investigations have
been made through physical experimeng.Jenseret al.[2], and direct numerical simulation,

e.g. Spalart and Baldwin [3]. Numerical solutions of the Reynolds-averaged Navier-Stokes
equations with various levels of turbulence model have also been reagié&;redsoe [4],
Justesen and Spalart [5], Cobbkén al. [6]. In this paper we will derive some analytical
solutions for these equations.

A general problem is first posed to leading order based on two well-established near-wall
properties of turbulent boundary layers and the quasi-steady assumption. Two widely used
turbulence models based on the eddy viscosity concept are then considered in detailsthe
transport mode{k is turbulence energy ardits dissipation rate, Jones and Launder [7]) and
the Baldwin—Lomax mixing-length model (Baldwin and Lomax [8]). Results for sinusoidal
flow over a (smooth) flat plate are derived and compared with experimental and numerical
data. The flat-plate results may also be applied to small-amplitude, but high Reynolds number,
oscillatory flow about a general cylinder by considering the boundary layer on its surface to
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be equivalent to a series of flat-plate boundary-layer problems defined by the local Reynolds
number (following Cobbiret al. [6]).

This problem for laminar flow was first solved, quite generally, to leading order by Stokes
[1] who derived the viscous damping force (the force component in phase with velocity).
Stuart [9] and Riley [10, 11] found the flow to be dependent on two Reynolds numbers

Re= 22 (1)
vV

and the so-called steady-streaming Reynolds number, given by

U*Z
Rs=§°Re= —= (2
wV
with
U*
§ ==, )
wda

where U7 is the amplitude of the external flow velocity, adds an amplitude parameter,

and is a measure of the ratio of the amplitude of fluid particle oscillation compared with a
body scale:. When both Reynolds numbers are large the laminar flow exhibits a double-layer
structure, with a thin inner layer of thicknegs((v/w)%?) where the flow is predominantly
oscillatory, and a much thicker outer layer of thickne®&Rs */?a) in which the velocity
decays to that of the freestream. In particular it is found that the flow exhibits a steady-
streaming component, induced by the Reynolds stresses of the oscillatory flow. There is bulk
movement of fluid from the top and bottom of the cylinder towards the line parallel to the
flow oscillation through the centre of the cylinder. This steady streaming thus produces two
jets, one on either side of the cylinder, along this line of symmetry. The form of the steady
streaming is strongly influenced by the parameter Rs. In this paper some analysis to higher
order will be made with the Baldwin—Lomax turbulence model.

While these flows have clearly long been of fundamental interest, they are also of consid-
erable practical importance. The periodic boundary layer induced on the sea bed due to the
passage of surface waves causes wave attenuation and possibly sediment movement (although
the rough-bed conditions normally encountered will be the subject of further study). The
viscous damping force on cylinders of various shape, at very high Reynolds numbers, is a
significant factor in the design of deep-water (dynamically constrained) offshore structures,
notably the tension-leg patform. Although the analysis here is for attached boundary layers,
this is important in certain cases and, when separation does occur, an attached-flow damping
estimate would still give a useful lower-bound estimate.

Experimental work on small amplitude oscillatory flows around cylinders has been carried
out by Keulegan and Carpenter [12] and Sarpkaya [13, 14]. The transition of Stokes layers
on cylinders from the laminar to turbulent state was studied experimentally by Honji [15] and
theoretically by Hall [16]. In most practical situations the flow is predominantly turbulent.

Here we use asymptotic matching techniques valid in the limit-Rsoo in place of
previous numerical methods, although we use the latter (together with experimental results)
to validate our results. The eddy-viscosity concept has been widely used in earlier studies; by
introducing the fluctuating turbulent quantities into the boundary-layer equations and taking
mean quantities in an averaging time which is small in relation to the oscillation period, the
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boundary-layer equation involving Reynolds stresses is obtained. According to the Boussinesq
assumption these stresses are related to the mean velocity gradients through a turbulent or eddy
viscosity, v, which must be specified through a turbulence model.

Kajiura [17] made one of the first solution attempts, in which the eddy viscosity was
assumed constant in a small inner layer, varied linearly with distance from the bed in an
intermediate region, and was constant above a certain distance from the bed. He obtained
a lengthy analytical-numerical solution. By avoiding the use of the inner layer, Brevik [18]
simplified Kajiura’s calculations although he (like Kajiura) did not take into account that
eddy viscosity could be a function of time as well as distance from the wall. Bakker [19]
adopted a mixing-length hypothesis, after that of Prandtl [20], in which the mixing length was
proportional to the distance from the bed, but he did not allow the eddy viscosity to decay
at large distances from the bed. Fredsoe [4] used the approach of Jonnson and Carlsen [21]
assuming the velocity to vary logarithmically, obtaining analytic results for both smooth and
rough beds. Direct numerical solution was undertaken by Spalart and Baldwin [3] for flow in
and beyond the transition region. Justesen and Spalart [5] performed numerical computations
using thek — ¢ eddy viscosity model, together with a near-wall function for the velocity.
Experimental work has been carried out for smooth and rough beds by Jdredef2]. We
shall be comparing the present results with those from some of these later papers.

To analyse the oscillatory flow over a general, nonplanar surface, we consider an orthog-
onal coordinate system(s, n), with s, n denoting the nondimensional tangential and normal
coordinates respectively; the corresponding velocity vector is takentiy loe, v), where the
freestream flow is taken to g’ coswt* (although it is trivial to generalise this to general
periodic temporal forms with zero mean, as carried out in Section 5). We then assume that
potential theory provides a flow on the wall surface given by

(u, v) = (U(s) cost, 0). (4)
Further nondimensionalisation is carried out by writing

t = wt”, vy = V¥, p*=aUlwp*p, 5)

wherev* andp* are the dimensional laminar viscosity and density respectively (both assumed
constant); the resulting boundary-layer equations are given by

ou ou u ap 10 ou

Zrs(u—mtu—) =L = (02, 6
o+ (”an+”as> 35 T Rean <” 8n> ©
ap

— =0, 7
o (7
v du

—+—=0. 8
an  0s ®

Herev, = 1+, is the nondimensional effective viscosity, andhe nondimensional eddy
viscosity. We now make two basic assumptiohsg 1 (corresponding to small amplitude os-
cillations), and Res> 1 (and, indeed, the stronger requirementfR4). The first assumption
(which implies fluid particle oscillations much smaller than the scale of the body is clearly not
necessary in the case of flow over a flat plate) allows a certain amount of progress to be made
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with the equations using linearisation (just as in the laminar case), while the second gives the
region of most practical use (and is also the most interesting area mathematically).

Some previous work has been carried out using asymptotic matching techniqstsattyr
turbulent flows in pipes, channels and two-dimensional boundary layers by Yajnik [22], Mellor
[23] and Bush and Fendell [24]. They found the flow consisted of distinct regions, an inner
viscous layer, a defect layer and an outer potential flow (in the case of external flows). Yajnik
[22] solved an under-determined system of equations using asymptotic hypotheses to obtain
the velocity defect law and the logarithmic law of the wall. He hypothesized that in the inner
layer the production of turbulent kinetic energy by the mean flow was of the same order as
the diffusion due to the fluctuating motion. In the outer layer the Reynolds stresses alone were
assumed to remain significant. Mellor [23] repeated some of Yajnik's analysis but without
assuming details of the asymptotic behaviour of the Reynolds stresses at the outer edge of
the inner, viscous layer. He too obtained the law of the wall and the velocity defect law,
and investigated the smaller scale structure by use of a two-point velocity correlation, and
found the two-thirds power law in velocity correlation space. Bush and Fendell [24] used
an algebraic eddy-viscosity as a closure to solve for channel and two-dimensional boundary-
layer flows, and obtained the law of the wall and the velocity defect law. They assumed the
turbulent and laminar stresses balanced in the inner layer, whilst the turbulent stress balances
the convection of momentum in the outer layer. They also used a differential relationship for
the eddy viscosity in the case of channel flows to emphasize history effects and found it only
made minor changes to the solution. This work was extended ley 81§25] to compressible
turbulent boundary layers. As before the flow exhibits a two-layer structure. They found the
flow obeyed the law of the wall in the overlap region of the two layers, and they formulated
algebraic turbulence models to take into account compressibility in the outer layer. Degani
et al. [26] and [27] have studied the large Reynolds number limit of attached steady three-
dimensional turbulent boundary layers also by the use of asymptotic methods. They found the
flow has a two-layer structure as before, with the law of the wall valid in the overlap region
of the two layers. They also found the flow in the inner layer is equivalent to two-dimensional
flow to leading order, with no crosswise velocity at this order. Additionally, Neish and Smith
[28] considered turbulent separation of the flow past a bluff body, again using asymptotic
methods, together with a degree of turbulence modelling (the limitations of which have also
been discussed).

This paper is concerned with asymptotic analysis of the above oscillatory problem in the
limit as Rs— oo. First (Section 2) we present a leading order solution to the problem, valid for
generally accepted turbulence models. This solution also serves to describe the fundamental
problem of turbulent, oscillatory flow over a flat plate (together with flow over nonplanar
surfaces, provided the amplitude of oscillation is relatively small), and as such is directly
analogous to the classical Stokes solution applicable to laminar flows. Next, in Section 3
the particular details for the well-knowin— ¢ transport model are given, whilst in Section 4
analysis for the somewhat simpler Baldwin—Lomax mixing-length model is considered; in this
section higher-order effects are also discussed, including some details of the steady streaming
which is produced through nonlinear effects. In Section 5 various numerical results obtained
from the analyses are presented, and compared with previous numerical and experimental
results; we also include our conclusions in this section.
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2. Leading-order solution

Generally acceptable turbulence models tend to lead to a number of common flow character-
istics (not least of which is the well-known log law). We exploit the general features of these
models by making (a few) general, basic assumptions regarding these models.

We start by introducing the scaled radial length scale

Y =n ReY2, (9)

In the case of laminar flows the scate= O(1) is the most significant; although laminar
flows are not central to our interests here (and, indeed this turns out not to be a crucial scale in
the asymptotic analysis of turbulent boundary layers), nonetheless this scale serves as a useful
starting point for our analysis.

We then suppose the flow to develop as follows

u=uo(Y,s,t)+uy(Y,s, 1)+ 0(8?), (10)
v =ReY?2[Svy(Y, 5, 1) + O(5?)]. (12)

Thus to leading order (6) becomes

dug . 0 oug
—=-Usint+ —|(v,— |, 12
o1 M (" 8Y> (12)

where, in the case of flow past a circular cylindér= 2 sins, whilst for a flat platel/ = 1;
here our only requirement is thaet = U (s). The boundary conditions become

ug — U cost asY — oo, (13)
and
up=0 onY =0. (14)

The details of the particular turbulence model are (implied to be) contained exclusively
within the effective viscosityv,. Ignoring (for the present) the lower portion of the near
wall/sublayer region we make the entirely reasonable assumptions that

(i) the shear stress varies negligibly over the near-wall region,
(ii) the flow is quasi-steady in this region and
(i) the eddy viscosity takes the Prandtl—-van Driest form, basically (62) below, with the mixing
length! being proportional to the distance from the wall(later this condition will be
relaxed slightly, but it serves as a helpful initial assumption).

Assumptions (i) and (ii) are basic properties assumed in most turbulent boundary-layer stud-
ies, but may also be verifiea posterioriin our asymptotic results.

The immediate implication of (iii) is that we may write the nondimensional eddy viscosity
in the form

oug

v, = Rs/2\3y? Tk (15)
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wherei, is a constant (this may be shown to G¢1) in both the models later taken). We note
already the occurrence of the parameter Rs, the so-called steady-steaming Reynolds number,
as given by (2). This parameter turns out to be fundamental in determining the nature of the
turbulent flow, and will be used extensively in what follows. In the laminar case, this parameter
is also of some significance, but only with regard to the higher order, steady streaming. In the
turbulent case, in the limit Rs> oo, we find a double-layer structure again; this also occurs in
the laminar case, although the details turn out to be very different. In particular, in the laminar
case the leading order boundary-layer flow involves just one scale and the outer region is
only of significance to the higher-order steady streaming. In the turbulent case, the sublayer
is dominated by viscous effects and the flow is relatively slow compared with the outer flow.
We scale the tangential velocity and normal length scale according to

upg = Slﬂo, Y = 52Y, (16)

where we assuma, ¥ = 0 (1), andsy, 8, < 1. Consequently, this implies a layer somewhat
thinner than that which occurs in laminar (Stokes) flows. In terms of these new variables, we
now have (utilising (15))

dilg

(Ve)inner = 1 4 12 RsY28,8, | —= | Y2. (17)

If the eddy and laminar viscosities are comparable (as indeed they must be in the sublayer),
then we have

8182 RS2 = 0(D). (18)

The boundary-layer equation (6) becomes quasi-steady to leading order,

d ou
K <vl~°) _o. (19)
Y Y

consistent with assumption (ii) above. We note from (12), that the terms contained in (19)
are O(Sf Rs9), which is somewhat larger than the pressure gradient term whiél{is On
integrating this expression once, we obtain

g K(t,s)

~ = — , (20)
W 145272

dug
aY

whereK (¢, s) is an, as yet, undetermined function.
If we define for convenience

BRI

=sign{ — ¢, 21
« = sig {BY} (21)
then in the limitY — oo

o — K—VKli(t’S) log 7. 22)
1
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Note here how the well-known log law emerges quite naturally from the analysis (partly as a
consequence of the basic assumptions).

For the outer layer where the velocity approaches the free-stream velocity, to leading order
we define the appropriate scale tojbe- 63Y, and assumings <« 1, we write

ug = U cOSt + 81ug(y, s, 1) + - -. (23)

If we now assume

81 Rs/?
J3

> 1, (24)

the leading order momentum equation may be written

du 9 ([ dii
Mo _ 5,55 R22 (1,200 (25)
ot ay ay

where the eddy viscosity is given by

di,
ay

(T)e)inner = )\i §27 (26)

and therefore a sensible balancing of terms demands that
831 =68, RS2, (27)

(and sos3 = §,). The equation to be solved in the outer layer then reduces to

a * *
uo _ 9 (5,9 (28)
ar oy \ a5

with boundary conditions

ug— 0 asy — oo (29)
and
VKK
uy — k i logy = U costlogy asy — O. (30)

1

This equality arises from the matching of (22) and (23), and so

VKK (2,
U cost = Kysl log(s2 Rs), (31)
1
giving
K(t,s) = A3U cost|U cost|. (32)

Taking the sign of (30), we require
Kk = sign{U cost} (33)
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and we also impose the condition to ensure proper matching
81l0g(82 Ry = 1, (34)

(although later this condition will be modified slightly to take into account higher-order ef-
fects). Equation (34) represents a transcendental link betdieand Rs. Such relationships
have been found before, for example in the context of axisymmetric viscous flows (Duck,
[29]). The equation can be solved by iteration/successive approximation. For example, a first
approximation is

1

8 =—,
! log Rs

(35)

with a second approximation being

1

1)
'log Rs— 2log(log RS’ (36)

and so on. Alternatively, a Newton method can be used to ob{aiwe can now write the
wall shear as

Ao )

— = K (t,s) = AU cost|U cost|. (37)
Y Y=0

The major result of this is the formula for the nondimensional wall shear given by

Ty 252
= o = 8222U cost|U cost|. (38)
0

The final results in this section are quite universal, and only differences/particular details
will be given in the following sections, where we go on to consider (in a little more detail)
the application of these results to two well-established turbulence models, namély-the
(Section 3) and Baldwin—Lomax models (Section 4).

3. k — & model

The first model we shall utilize is the— ¢ transport model (See Jones and Launder, [7]). This
is a two-equation model, bringing two further functions into the equations, nalhigly, the
turbulent kinetic energy, and*2 we, the dissipation rate. The nondimensional eddy viscosity
is given by

k2

with two additional transport equations to close the problem, (assuming her&) namely

ok 0 . 0k
o2 (=) p (40)
ot Y \ oy dY
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e d (v, 0 e g2
—=— (== =P — vp—, 41
or Ay <088Y>+clk 2 (41)
where
au \ 2
P = — . 42
UI(8Y> ( )

and wherer,,, oy, o, c1. andcy, are constants of the model. Two sets of constants were used
in this study, namely those of Jones and Launder [7]

¢, =009, =10, 0,=13 1. =144, ¢ =192, (43)
and those proposed by Chien [30]
¢, =009, =10 o0,=13 ¢, =135« =180 (44)

The differences in constants are due to the model being correlated for different types of flows,
in particular Jones and Launder [7] determined the constants for severely accelerating flows.
For thek — ¢ model, we are required to solve (6), together with (39)—(42). As in the previous
section, toO (§) we find (6) leads to (12), but with

k2
ve=14+v, =1+¢, Rs—, (45)
€

As before, we find a double-layer structure. In the inner layer we scale according to (16)
together with

k =684k, &= 058, (46)

and we assume the eddy-viscosityds1l) in this layer, as are all terms involvinigands in
the above, yielding the following relationships

84=06,°Rst,  85=68,"Rs} (47)
with 8, described by (16), andi by (35).

To leading order of the three transport equations (12), (40) and (41) all become quasi-
steadyij.e.

s [ 2\ viig

— 1+CT —= =0, 48
oY ( ”£>8Y:| (48)
s [ 2\ ok k2 [ viig

— | —1+c,— | —=|+c.= ~) —&=0, 49
%% o*k( i )a " <8Y> (49)
s [ 1 2\ oz | ~ [ iig\ 2 82

— | —|14+c,— | —=|+crck ~ ) —c—==0 50
%% os< " )ay 1eCn ( ) 7 (50)
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We can now integrate (48) once, to obtain

dilg _ F(i,3) 51)

~

Y 14,2

(cf. (20)). If we now examime the limi¥' — oo, we expectdii/dY — 0, and surmise
thaté/k? — 0, so that the turbulent eddy viscosity,dominates the laminar viscosity, the
asymptotic methods suggest that

fio=u1d.$)log¥ +---,  k=k(. 5+ -, é=81(;’§>+---, (52)
where

ki = oeul(cae — c1e), (53)

£1 = /¢, 00 US| (c2e — c1e), (54)

which are entirely consistent with the Section 2 results. This shows (again) the natural occur-
rence of the ‘log law’ in the velocity profile. We now consider the outer layee= O (1))
wherein the velocity is equal to that of the freestream to leading order and we scale variables
according to

u = UCOoSt +81iig+ -+, k==3ck, & = 576, (55)

other quantities scaling as in Section 2. If we now substitute the above in (12), (40)—(42), and
balance as many terms as possible to leading order, we find

86 =87 =8,°Rs?, (56)

and the leading order equations become

dit 3 k2 dii

o = = CMTLP ) (57)
ot ay g 0y

ok 9 [c k2 ok 2 [ iig\>

— = C—MT—~ +cu—= M~O — &, (58)
at dy | o € dy g \ dy

95 9 [c k20 ] _(dig\2 @2

ot 9y |o. gy | L <a 7 (59)

Matching the inner and outer velocities, we are led to conclude
u; = U cost. (60)

The final result is that we must haﬁcé = /Cuoe(coe — c1.). Note that in the above we have
(implicitly) relaxed the assumption (iii) on Sectiori.2. (15), although this condition is valid
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at the outer edge of the sublayiee. asY — oo. We shalll later (Section 5) consider humerical
results arising from this section.

4. The Baldwin—Lomax model

The second turbulence model to be used here is the Baldwin—Lomax [8] model, which is a
two-layer algebraic eddy viscosity model. The model is based on that of Cebali31],

and has the great advantage over most mixing-length models that it does not require definition
of the ‘edge’ of the boundary layer. The eddy viscositys given by

(V)inner 71 < R,
Ul = b ‘ (61)
(V)outer 71 = ng,

wheren.. is the smallest value af at which(v;)inner and(v;)outerare equal. In the inner region
the Prandtl-van Driest formulation is used

(V)inner = 12|V v ul, (62)
where
_n+
| =kn [1 — exp<Fﬂ , (63)
and
n-‘r — pz:Lutn — A/ /O:Twn’ (64)

with the constanA* = 26. This, like all constants in the model, was calculated by Baldwin
and Lomax [8], requiring agreement with the Cebetcal. [31] formulation for incompress-
ible, constant-pressure boundary layers. For the outer region, the eddy viscosity is given

by
(Vi)outer = K Cep FiwakeFkieb(1), (65)

whereK = 0-0168 is the Clauser constant, afig, = 1.6 is an additional constank,yaye is
given by

N maxFmax

Fyake = the smaller of , (66)

ka”maxugif

Fmax

whereC,x = 0-25 is a constant and wheng,, and Fiax are determined from the function

F(n) =n|V AU [1—exp(%’f)} (67)

with Fiax being the maximum value of (n), andnmax being the value ofr at which this
maximum occurs. The functiofyep(n) is the Klebanov intermittency factor, introduced to
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ensure the eddy viscosity tends to zero in a regular manner far from the body, thus ensuring
the flow tends to that of the freestream, with

Ciepn \ ° -
Fen(n) = | 1+ 5.5 (—) , (68)

Nmax

where the constantfye, = 0-3. The quantityu g is the difference between the maximum and
minimum total velocity in the profileife. at a fixeds station)

ugit = (U max — (JU[)min- (69)

4.1. LEADING-ORDER SOLUTION

Here, initially we shall again just point out the (minor) differences with the analysis of Sec-
tion 2. We shall assume that the inner eddy viscosity law is valid throughout the(innrer

0 (1)) layer; this can be shown to be generally cor@giosteriori In this region we merely
replace (20) with

[ob)
13
o

_ K(t,s) (70)

oo g (12 2’
142772 [1—exp(—A2Y 070)]

o
the primary difference being the modification of the mixing length (in line with the standard
Baldwin—Lomax model) which is therefore a relaxation of the constraint (iii) in Section 2; this
has little effect on the remaining results of Section 2.

Solving the problem throughout the whole of the boundary layer would obviously require a
numerical approach; we can, however, confirm that the Klebanov intermittency factor ensures
the velocity decays to that of the free-stream in the outer limit- co, where the effective
viscosity takes the form

SO
~

diig
oy

Ve = 14 8% RS (Fmaw)[1 + 7 Fmad 78172, (71)

where¢ andyn are functions ofjnmax, and which encompass all the constants of the model and
the functions such aB ke, €tC.

As we have already discussed, in the outer layes> 1, but as the eddy viscosity decays
asy — oo, there must be a breakdown when = 0O(1), although this is likely to be
a passive breakdown, and is unlikely to affect the flow significantly. The laminar viscosity
doubly ensures the proper solution asymptote in the freestream.

Also noteworthy is the limit as — %n, (or more generally — %(Zm + )z, m integer)
since this is where the flow reverses its direction of motion on the surface of the cylinder (and
indeed in the freestream). If we Set 1 — 27, then ag — 0 the scales of the inner and outer

2
regions change somewhat. In the latter case, the appropriate scale appears to be

B log(7® Rs)
r=0 (W) ’
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implying a thickening of this region around flow reversal time. In the outer region;-as,
then

__log(?*R9
T RRd2
implying a thinning of this region, but we see flow reversal is achieved in a relatively smooth

manner, and does not disrupt the nature of the flow during the rest of the cycle; the numerical
results in Section 5 confirm this.

(72)

4.2. HGHER-ORDER TERMS INCLUDING STEADY STREAMING

For steady streaming in the laminar case inertia terms must play a role in (6). We may show
this also to be necessary for the turbulent case using (12), and considering the following
integral in terms of the origindl coordinate

2 Y . E)uo
/ / Usint + — | dY dr =0, (73)
o Jo at

(assuming periodicity in time). Therefore, for generairom (12)

2
dug 0
/ Vo (Y, )20 _ 240
0 oY oY

Sincev. (T, r) > 0, ug can have no component independent.dfience inertia terms are vital
for the generation of steady streaming, just as in the laminar case.
In the inner region, inspection of (6) suggests a sequence of term(S@fRs), o),
0(81), 0(9), etc. We have considered tr&(éf Rs) terms previously, whilst if we inspect
the O (1) terms we find notionally just one term, that of the leading order pressursin:.
This must clearly be balanced by another term, which must be an intermediate ternuin the
expansion. This suggests some terms given in the expansion below, while other terms can be
justifieda posteriori

] dr =0, (74)

Y=0

u = 81ii = d1{iio + O(81) + 87 ° Rs Yty + 87 ° Rs i,
+O0*Rs™) + 862 Rs itz + - - ). (75)
For brevity in what follows, it is useful to define

diio 1/2

~

a=A
dE%

o
The ‘solution’ to the quadratic equation (70) may be written

diip  [1+4r4Y2(1— exp(—aY))?|U cost|21Y2 — 1
— = K

d 22Y2(1 — exp(—aY))?

: (76)

and so (see (22) also),

iip — UcostlogY + Ki(t,s) +--- asY — oo, (77)
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where K (t, s) is periodic in time (with zero mean) on account of the properties of (74).
Higher-order matching between theand ¥ regions then requires a slight (higher-order)
adjustment to our definition of (35) leading to

Ao K:

U cost U cost

1+6; { = |og(Rss§} =0, (78)
(whereu§ — U costlogy + Ao(t, s) + - -- asy — 0) sinceA, and K are both determined
independently, from the outer and inner layers respectively. However this re-definitian of
has little effect on the actual evalution&f (see (35), (36)). In some ways the most profound
effect is that the derivativg% leads to additional terms of the form

Y 981 9
81 0t 9Y
in the inner layer and

598, 9

81 9t 9y

in the outer layer, (together with thé&, /9¢ terms that must obviously occur).

Further, we note that additional, even higher-order terms are likely to appear in (78) above.
Finally, with respect to this particular point, we note thdg/dr = O(8?). Although the
next term in thex expansion is likely to bed (82), this term turns out to be inconsequential
for our purposes. Instead we turn out attention to@h@; > Rs™?) term in theu expansion,
obtained through consideration of tlig1) terms in (8). (Although these are smaller than the
previously neglected (52) Rs), some higher-order terms may be determined independently
of lower-order terms.) We may regard this solution, therefore, as developing in the form of
parallel infinite series. With details omitted for the sake of brevity, after some algebra we find
the following series solution fai in the limit asy — oo

ii = UcostlogY + Ki(t,s) +---+ 0(5)

_ _ tanr ~ Ki(t,s) ~
+83Rsl{x logY + Ki(t,s +}
L 22" " 22U cost] O 16 5)
_ tan Ko(t,s)
oy 2Rs 1] —Y logY — 2 —_—
+ { K22 +(log )+2A2|Uc05t|

+ 1 aKS?-l—K*(l‘ ) + }+ O(7Rs ™
s S e
222U cost 3t 2 !

sectarfr ~, kcostdU ~
+88° Rs™t {— Y2 — —
161U 22 ds

K1(t, s) se@ttans ~
— + -7, 79
81{U2 } (79)

The first occurrence of the steady streaming is seen in the final order detailed above, in
particular in the term involving d/ds. However it is also important to point out that a number
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of the terms in the above are independentUofand hence also of and indeed of the body
geometry in general, and this suggests these results must be treated with some caution, and
that a breakdown/limitation of the turbulence model itself may be suggested. Certain of the
terms above also predict a discontinuity of velocity along the line of symmetry (for example
in the case of flow past a circular cylinder), and singularities of solution at certain times during
the cycle, factors again indicating that some caution must be exercised when interpreting these
higher-order results.

Returning to the outer layer steady-streaming effects will first arise fron®itaé;) terms
in the outer: expansion, and these lead to the following (symbolic) solutiof as 0.

uy; = aa(t, s)logy + ax(t, s) + as(t, s)ylogy
+aa(t, $)§ + as(t, $)52(10g 5)* + - - -, (80)
whereas(z, s) contains a term of the form
 cost dU
A% ds
anday a term of the form

5k cost dU
2)% ds’

both of which imply a nonzero time-mean component. Note that higher-order terms ensure
a correct match between the inner and outer solutions. We find from this a steady velocity
component ofO(S(Sl‘3 Rs™1) in the inner layer ana (6,6) in the outer layer. We note again

that for the particular case of the circular cylinder (for whiGlis) = 2 sins), elements of

the steady-streaming solution take the form sfgms} coss. This implies a discontinuity

in the steady-streaming velocities conceivably leading to an impact at the line of symmetry
(although ratification of this would require full numerical solution). In the laminar case there
is also a collision of the steady boundary layers alorg 0, r, but the outer dubious facets

of the turbulent solution (notably the singularities and other discontinuities) are not present,
suggesting that the turbulence model is inadequate at this high order. Indeed, the model is
likely to be inappropriate for the numerical evaluation of these higher-order terms, but is
adequate for the evaluation of the oscillatory terms (Colebial. [6]).

Progress with the Baldwin—Lomax model to still higher orders proves prohibitive due
to algebraic difficulties (aggravated by the occurrence of the terms arising d8enas, as
discussed earlier in this section). We note that the overall structure of the solution involves
three notionally independent (small) parameters, nadieRs * ands;. Although the latter
two are linked, and it would be feasible to assign a magnitudanderms of one of the other
parameters, with our approach three sets of inter-related series emerge. An analogous (but
simpler) situation arises in the far downstream analysis of the laminar boundary layer on an
axisymmetric body, as studied by Glauert and Lighthill [32], Stewartson [33] and Bush [34].

We further note that there may well be a further layer, thicker still than the outer layer,
caused by the steady streaming. Simple order-of-magnitude arguments suggest this could be
given by

5, 1/8
j = 0(<§> ) if 5 Res¥4 > 1, or
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= 0 Y2Rs Y257 if ;Y Re¥/4 < 1.

However, affirmation of this point is not possible without detailed, numerical confirmation of

the higher-order terms within the = O(1) layer, (also involving the intermittency factor)

and this is prohibited in part by the various solution discontinuities/singularities that emerge.
A similar investigation involving the evalution of higher-order terms usingcthe model

was found less amenable to analysis of this kind (because of its greater complexity) and

equivalent progress has not been made.

5. Numerical results, comparisons and conclusions

Since curvature effects may be ignored to leading order, the solutions we have obtained are
applicable to an oscillating flow past a flat plate, for which we merelylput 1. Thus we
are able to compare with previous results for the flat plate directly, and we consider mainly
the results of Cobbiet al. [6], which were obtained numerically using the Baldwin—Lomax
mixing-length turbulence model, including the intermittency factor, using a logarithmically
spaced transverse grid to improve accuracy. The results of Cebhinpredict the onset of
turbulence at about Rs 10°, and they should provide validation of the Rs co asymptotics
in this study (although we doot expect the current study to model the transition process).

The only difference between the results for the Baldwin—Lomax model aridtlenodel
is in the constants (in facx,g = 016, and, /c,0.(c2: — 1) = 0-1872 for the constants of
Jones and Launder, [7] angc, 0. (c2. — c1.) = 0-1755 for those of Chien, [30]), the different
results arising from the different empirical analyses of these authors. For two turbulence mod-
els of such different forms, this is a gratifying result. We can thus calculate the variation of
the wall shear throughout an entire cycle. When so doing, we must bear in mind that because
of multiple nested logarithms involved in the calculationspthe series may be very slow to
decay and it is very difficult to say at what value of (finite) Rs the asymptotics will give a good
approximation to the numerical results. In Figure 1 we have plotted the wall shear against time
for the highest value of Rs considered by Cobéiral. [6], namely, Rs= 10’. We note the
gualitative similarities with the results of Spalart and Baldwin [3]. From this graph we see
that the two curves have a similar phase, with the numerical values having a slightly larger
amplitude than our asymptotic results. It must be remembered that only the first terms in the
series were taken and so this level of accuracy is reasonably acceptable. There are, however,
two jumps in the curves for the numerical case; these are due to the eddy viscosity switching
between the two expressions ke This switching occurs close to the time of flow reversal
and is due to th&/3. = U2 cos’ ¢ term becoming relatively small as— 3(2m + 1)x.

We can also determine the variation of the friction factfyr, with the steady streaming
Reynolds number, Rs. For the laminar cage= 2Rs /2. Here f,, is given by

*

fo = max {Ti“’} = 262)2, (81)

0<r<2n %p* Uz?

and

fw = max [T—“’] = 28RS /0. (cae — 1), (82)

0<r<2n %p*U;‘OZ



An attached, turbulent, oscillatory boundary lay&51

0.0015

0.0010

0.0005

< 0.0000

—0.0005

-0.0010

-0.0015

e o o o o epresent results (k—&¢ model, Jones & Launder constants)
————— present results (k—e& turbulence model, Chien constants)
present results (Baldwin—Lomax turbulence model)

— — — numerical (Baldwin—Lomax model from Cobbin et al [6])

Figure 1. Plot of wall shear against time, Rs 107 .

for the two turbulence models. The variation £f with Rs is shown in Figure 2. The dashed
line represents results obtained from the Baldwin—Lomax model, while the solid lines are
those of thek — ¢ model, with the constants of Jones and Launder [7] (upper curve) and
Chien [30] (lower curve). From this figure we can see the effect of transition on the results of
Cobbinet al.[6], namely the jump in the values at Rs2 x 10° as we would expect. There
is, however, general convergence of other results with our asymptotic results as Rs
We find that the intersection of the present Baldwin—Lomax model turbulent curve with the
laminar curve occurs at roughly Rs 1.5 x 10°, which therefore gives a remarkably good
(somewhat fortuitous) agreement with the point of transition.

We can also obtain, to leading order, the pseudo-displacement thicknelegined by

8" = /Oo[u — U cost] dY. (83)
0
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Figure 2. Plot of friction factor against Rs.

If we now take the leading order terms of (6), we have (12), which can be integrated with
respect tar so that

® 9 ou ™ ou
—w—-Ucost)dY = |v,—| =-—— , 84
/0 3l(u cost) [v 3Y]o Y |y_o ®9
which implies
LTI ®)
ot Y |y o
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For the circular cylinder problem, the force depends on the shear stress distribution and the
pseudo-displacement thickness and can thus be simply obtained. The contribution to the force
due to pressuré’, is given by

2 . .
F, = 5 coss sint + 2sirf s cog 1, (86)

and due to shear stregsis given by, for the Baldwin—Lomax model
F, = 482)2 sins cost| sins cost|. (87)

The force on a cylinder is normally described by the Morisdral. [35] formula, with
components in phase with the velocity (drag) and in phase with acceleration (inertia)

du
F = paCp|U|U +7pa*Cy 5. (88)
The inertia coefficienC), is very close to its potential flow of 2 for attached flows in the case
of a circular cylinder, and here we are only concerned with the drag or damping force defined
by the drag coefficient.
The drag coefficient on the cylinder is then given byg(Sarpkaya, [14])

3 2
Cp = _4_1/ (Cs + Cp) cost dt, (89)
0
where
2
C, = /O F, sins ds = 325212 cost| cost|, (90)
and
2 2 .
C,= / F,coss ds = ?n sint. (91)
0

This gives, for the Baldwin—Lomax model

Cp =—-Ya2s2. (92)
The same procedure for tthe— ¢ model gives

Cp= —%4, /€,.0¢(c2e — c1)82 RS2, (93)

These curves are shown in Figure 3.

The expressions far,, can be generalised for any external floi(s.7) (replacingU cost
in the above), and with an nondimensionalisation such that m&X(s, r)| = 1 we find (for
the Baldwin—Lomax ané — ¢ models respectively)

Tw = 8203U, (s, 1)|U,(s, 1), (94)
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Figure 3. Plot of drag coefficient against Rs.

and
7y, = 8§ RS /Cu0¢ (Coe — c10) U (s, DU (s, 1)]. (95)

Taking, for examplel,(s, 1) = % cost + % cos 3, we show in Figure 4 the variation of wall
shear with time throughout one cycle, comparing with unpublished numerical results kindly
provided by A. Cobbin; the agreement is reasonable. Note that the ‘wiggles’ in Figures 1 and 4
in the numerical results (rather than the asymptotic results which have been derived here) are
likely to be caused by changes in the viscosity law, described by (61), around times when flow
reversal occurs.

To conclude, therefore, the turbulent oscillatory boundary layer on a circular cylinder has
been analysed in the limit of large Reynolds number (or more specifically, steady-streaming
Reynolds number Rs). Although the entire velocity profile across the boundary layer has not
been calculated in detail, nontheless it is possible to obtain important analytic results (includ-
ing shear stress and displacement thickness) despite this, on the basis of just the three basic
assumptions made in Section 2 (one of which can be relaxed, anyway). The results are found
to be entirely consistent with both tike— ¢ and Baldwin—Lomax models, which yield very
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Figure 4. Plot of wall shear against time f@r, = % cost + % cos 3 with Rs= 10.

similar results for basic flow properties, differing merely by the choice of the multiplicative
constants.

For cylinder flows, to leading order the local flow is taken to be equivalent to the oscillatory
flow over a flat plate and results have been shown to be consistent with previous numerical
work. We note that in the case of a flat plate, we merely need tg setl in our results, and
then there is no longer any need for the requirementstkgtl, just that Rs>> 1.

For cylinder flows, higher-order, including steady-streaming effects for the Baldwin—
Lomax model have been analysed. However, the discontinuities and singularities resulting
from the Baldwin—Lomax model suggest the turbulence model may be inadequate at these
higher orders. Higher-order (including steady-streaming) effects will also occur through dis-
placement effects of the boundary layer, but these will be of higher order than those considered
here. However leading-order results show reasonable agreement with previous experimental
and computational results (of the oscillatory flow).

Overall, there is some similarity of the solution structure with previous (asymptotic) studies
on steady turbulent flows (for example Mellor, [23] and Bush and Fendell, [24]), and also
intriguingly with the far downstream solution for the boundary layer on a body of revolution.

It is worth stressing that most of this analysis is also applicable to flow past general-shaped,



356 M. J. Butler et al.

smooth cylinders/surfaces, in arbitrary time-varying (zero-mean) flows, of the form studied
numerically by Cobbiret al. [36]. An obvious extension to this work would be the use of
more modern, sophisticated closure models, such as the Reynolds stress transport equations
(Launderet al. [37]), although the associated system of equations would inevitably be of
higher order, but could perhaps lead to more useful higher-order solutions than those presented
here.

Acknowledgment

M. J. Butler is funded through an Engineering and Physical Sciences Research Council stu-
dentship, which is gratefully acknowledged.

References

1. G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendullirass Combr. Phil.
Soc.9 (1851) 35-48.
2. B.L.Jensen, B. M. Summer and J. Fredsoe, Boundary layers at high Reynolds nuleid. Mech.206
(1989) 265-297.
3. P.R. Spalart and B. S. Baldwin, Direct simulation of a turbulent oscillatory boundary layer. In: J.-C. André,
J. Consteix, F. Durst, B. E. Launder, F. W. Schmidt and J. H. Whitelaw (€dghulent shear Flows.
Berlin: Springer (1989) pp. 417-440.
J. Fredsoe, The turbulent boundary layer in wave-current matidtydraulics Div. ASCH10 (1984) 1-37.
P. Justesen and P. R. Spalart, Two-equation turbulence modeling of oscillatory boundanAl#&r28th
Aerospace Sciences Meeti(kP90) AIAA paper 90-0496.
6. A. M. Cobbin, P. K. Stansby and P. W. Duck, The hydrodynamic damping force on a cylinder in oscillating,
very-high-Reynolds-number flow8ppl. Ocean Re4d7 (1995) 291-300.
7. W. P. Jones and B. E. Launder, The prediction of laminarization with a two-equation model of turbulence.
Int. J. Heat and Mass Transfdi5 (1972) 301-314.
8. B. S. Baldwin and H. Lomax, Thin layer approximation and algebraic model for separated turbulent flows.
AIAA 16th Aerosp. Sci. Meetir{978) AIAA paper 78-257.
9. J.T. Stuart, Double boundary layers in oscillatory viscous flowluid Mech.24 (1965) 673-687.
10. N. Riley, Oscillating viscous flowslathematikal2 (1965) 161-175.
11. N. Riley, Oscillatory viscous flows. Review and extensibrinst. Maths. Applics3 (1967) 419-434.
12. G. H. Keulegan and L. H. Carpenter, Forces on cylinders and plates in an oscillating.frRés. Nat. Bur.
Stand.60 (1958) 423-440.
13. T. Sarpkaya, Forces on cylinders and spheres in a sinusoidally oscillatingJfléigpl. Mech42 (1975)
32-37.
14. T. Sarpkaya, force on a circular cylinder in a viscous oscillatory flow at low Keulegan—Carpenter numbers.
J. Fluid Mech.165 (1986) 61-71.
15. H. Honji, Streaked flow around on oscillating circular cylindeiluid Mech.107 (1980) 509-520.
16. P. Hall, On the stability of the unsteady boundary layer on a cylinder oscillating transversely in a viscous
fluid. J. Fluid Mech.146 (1984) 347-367.
17. K. Kajiura, A model of the bottom boundary layer in water wasgsl. Earthquake Res. Ins#6 (1968)
75-123.
18. I. Brevik, Oscillatory rough turbulent boundary layetsWaterway, Port and Ocean Division, ASCH7
(1981) 175-188.
19. W.T. Bakker, Sand concentration in an oscillatory flBvac. 14th. Conf. Coastal Engineering. Copenhagen:
ASCE (1974) pp. 1129-1148.
20. L. Prandtl, Uber die ausgebildete TurbuleRmc. 2nd. Int. Cong. Appl. MeghZurich (1926) pp. 62-74;
translated as Turbulent FloMat Adv. Comm. Aero., Wash., Tech. Md8b (1927).
21. 1. G. Jonnson and N. A. Carlsen, Experimental and theoretical investigations in an oscillatory turbulent
boundary layer]. Hydraulic Res14 (1976) 45-60.

ok



22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

An attached, turbulent, oscillatory boundary lay&57

K. S. Yajnik, Asymptotic theory or turbulent shear flo@sFluid Mech.42 (1970) 411-427.

G. L. Mellor, The large Reynolds number, asymptotic theory of turbulent Boundary Layerd. Engng.

Sci.10 (1972) 851-873.

W. B. Bush and F. E. Fendell, Asymptotic analysis of turbulent channel and boundary-layet. fiduid
Mech.56 (1972) 657-681.

J. He, J. Y. Kazakia and J. D. A. Walker, An asymptotic two-layer model for supersonic turbulent boundary
layers.J. Fluid Mech.295 (1995) 159-198.

A. T. Degani, F. T. Smith and J. D. A. Walker, The three-dimensional turbulent boundary layer near a plane
of symmetryJ. Fluid Mech.234 (1992) 329-360.

A. T. Degani, F. T. Smith and J. D. A. Walker, The structure of a three-dimensional turbulent boundary layer.
J. Fluid Mech.250 (1993) 43-68.

A. Neish and F. T Smith, On turbulent separation in the flow past a bluff Boduid Mech.241 (1992)
443-467.

P. W. Duck, The effect of a surface discontinuity on an axisymmetric boundary@y&iMech. Appl. Math.

37 (1984) 57-74.

K.-Y. Chen, Predictions on channel and boundary layer flows with a low-Reynolds-number turbulence model.
AlAA J.20 (1982) 33-38.

T. Cebeci, A. M. O. Smith and G. Mosinskis, Calculation of compressible adiabatic turbulent boundary
layers.AlAA J.8 (1974) 1974-1982.

M. B. Glauert and M. J. Lighthill, The axisymmetric boundary layer on a long thin cylifttec. R. Soc.
LondonA320 (1955) 188-203.

K. Stewartson, The asymptotic boundary layer on a circular cylinder in axial incompressibl@ diari. J.

Appl. Math.13 (1955) 113-132.

W. B. Bush, Axial incompressible viscous flow past a slender body of revoliRiocky Mount. J. Math6

(1976) 527-550.

J. R. Morison, M. P. O'Brien, J. W. Johnson and S. A. Schaaf, The force exerted by surface waves on piles.
Petroleum Trans189 (1950) 149-157.

A. M. Cobbin, P. K. Stansby and P. W. Duck, The Viscous Force on Noncircular Cylindrical Bodies in
Attached Turbulent Oscillatory Flow (1998). In preparation.

B. E. Launder, G. J. Reece and W. Rodi, Progress in the development of a Reynolds stress turbulence closure.
J. Fluid Mech.68 (1975) 537-566.



